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TRANSSHIPMENT PROBLEMS

‘0 We consider the shipment of a homogeneous com-
modity or product from a specified point or source
to a particular destination or sink: the homogeneity
characteristic ensures that each unit shipped Is
identical and is independent of point of origin

d Typically, the source and the sink are not directly
connected; rather, the flow goes through the
transshipment points, I.e., the intermediate nodes

d The objective Is to determine the maximal flow from
the source to the sink
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DIRECTED FLOW NETWORK

EXAMPLE




TRANSSHIPMENT PROBLEMS

Q nodes 1, 2, 3,4 and 5 are the transshipment points

Q directed arcs of the network are (s, 1), (s, 2),
(1,2),(1,3),(2,5).(3,4),(3,5),(45),(54),
(4,t),(5,1); the existence of an arc from 4 to
5and from 5to 4 allows bi-directional flows
between the two nodes

Q each arc may be constrained in terms of a limit

on the flow through the arc



MAX FLOW PROBLEM

d We denote by f;; the flow from 1 to j, which

equals the amount of the commodity shipped

from 1 to J onthearc (i,])that directly connects
the node 1 to the node |

A The problem is to determine the maximal flow f

from s to t taking into account the flow limits k;;

of each arc (1,])

d The mathematical statement of the problem is



MAX FLOW PROBLEM

max / = f
s.t.
0< f <k V arc (i, j) that connects
A nodes i and j
f = Zfsi at source s ) COnServation Of
i >
zf,-t = f atsinkt flow relations

i 7

2 /.. = 2 fj . } at each transshipment node j
k



MAX FLOW PROBLEM

d While we may use the simplex approach to solve
the max flow problem, we construct a numerically,
highly efficient network method to determine f

d We develop such a scheme by making detailed
use of graph theoretic notions

d We start out by introducing some definitions



DEFINITIONS OF NETWORK TERMS

 Each arc is directed and so for an arc (1, )),
fij =0
d A forward arc at a node 1 Is one that leaves the
node 1 to some node | and is denoted by (i,])

d A backward arc at node 1 1s one that enters node

| from some node j and is denoted by (j, 1)



DEFINITIONS OF NETWORK TERMS

0 A path connecting node i to node j is a sequence
of arcs that starts at node 1 and terminates at
node |
QO we denote a path by
F = 1(Lk), (K1), ..., (m])}

Q In the example network

. { (1,2),(2,5),(5,4)} Is a path from 1to 4

-{(1,3), (3,4)} IS another path from 1to 4



DEFINITIONS OF NETWORK TERMS

d A cycle Is a path with the condition 1=j, I.e.,

F={(LK), (kK1) ..., (m1)}
d We denote the set of nodes of the network by o

Q the definition Is

N ={i:1is anode of the network }
Q In the example network

N ={s,123,4,51}



NETWORK CUT CAPACITY

d A cutis a partitioning of nodes into two distinct
subsets § and T with the properties

N = SUT and s N T =L
d We are interested Iin cuts with the property that

sesand re 7
d We say that the sets § and T provide an s —t cut;
In the example network,
S =1{s1,2} and 7 ={3,4,5,¢}

provide an s—t cut



NETWORK CUT

4 The capacity of a cut is
K(s,7) = Yk,

SES
te7

d In the example network with
S={s1,2} and 7={3,4,5,t}
we have
K(S,7T) = k, +k,_
but for the cut with
§=4s,1,2,3,4} and T={5,t1}

K(S,7) =k4,t + k4, + k3,5 + kz,5

5



NETWORK CUT

1 Note: arc (5, 4) Is directed from anode In T to a

node in § and Is not included In the summation

1 A salient characteristic of the s =t cuts of interest Is

that when all the arcs in the cut are removed, then

no path exists from sto t; consequently, no flow
IS possible since any flow from sto t must go
through the arcs in a cut

d The flow Is limited by the capacity of the cut



NETWORK CUT LEMMA

d|For any directed network, the flow f from s to t

IS constrained by an s—t cut so that

fSK(S,7T) forevery s—t cut set 5,7

d Corollaries of this lemma are

() max flow < K (S5,7) V 5,7

and

() max flow < l?yufn K (5,7)



MAX - FLOW - MIN -CUT THEOREM

| For any network, the value of the maximal flow
from s to t is equal to the minimal cut, i.e., the

cut 5,7 with the smallest capacity

d The max-flow min-cut theorem allows us, Iin
principle, to find the maximal flow in a network, we
find the capacity of each of the cuts and determine

the cut with the smallest capacity



MAX FLOW

0 The maximal flow algorithm is based on the identifi-
cation of a path through which a positive flow from
s to t can be sent —the so-called flow augmenting
path

4 The procedure is continued until no such flow
augmenting path can be found and therefore we
have the maximal flow

d The maximal flow algorithm is based on the

repeated application of the labeling procedure



LABELING PROCEDURE

 The labeling procedure iIs the basic scheme to
determine the maximum flow in a network

A The labeling procedure is used to find a flow
augmenting path from s to t

d We say that a node | can be labeled if and only If
flow can be sent from s to t and node J Is on a

path to make such flow possible



LABELING PROCEDURE

Step 0: start with node s
Step 1: given that node 1 Is already labeled, label
node j only If
(1) either there exists an arc (1, ]) and
Fij < kjj
(i1) or, there exists an arc (}, 1) and
fi; >0

Step2: if J=t, stop; else, return to Step 1



THE MAX FLOW ALGORITHM

Step 0 : start with a feasible flow

Step 1: use the labeling procedure to find a flow
augmenting path

Step 2 : determine the maximum value § for the
largest increase (decrease) of flow on all
forward (backward) arcs

Step 3 : use the labeling procedure to find a flow
augmenting path: if no such path exists,

stop; else, go to Step 2



ILLUSTRATIVE EXAMPLE

 Consider the simple network with the flow

capacities on each arc indicated




ILLUSTRATIVE EXAMPLE

d We initialize the network with a flow 1




ILLUSTRATIVE EXAMPLE

d We apply the labeling procedure

6 1

f=min{6,2,7}=2



ILLUSTRATIVE EXAMPLE

d Consider the simple network with the flow and the
capacity on each arc (1, J) indicated by (fj;, kj;)




ILLUSTRATIVE EXAMPLE

1 We repeat application of the labeling procedure

f=mn{59} =5



ILLUSTRATIVE EXAMPLE

d We increase the flow by 5




ILLUSTRATIVE EXAMPLE

1 We repeat application of the labeling procedure

®

f=mn{4,9}=14



ILLUSTRATIVE EXAMPLE

1 We increase the flow by 4 to obtain




ILLUSTRATIVE EXAMPLE

d We repeat application of the labeling procedure

f =min{4,3,5}=3



ILLUSTRATIVE EXAMPLE

d We increase the flow by 3

f = 15 with no flow augmenting path



UNDIRECTED NETWORKS

d A network with undirected arcs is called an
undirected network: the flows on each arc (1, J) with
the limit k;; cannot violate the capacity
constraints in either direction

d Mathematically, we require

‘ Interpretation of
fii Sk P
fi S ko unidirectional flow below
fiifi= 0 capacity limit




EXAMPLE OF A NETWORK WITH
3 UNDIRECTED ARCS




EXAMPLE OF A NETWORK WITH
UNDIRECTED ARCS

d To make the problem realistic, we may view the

capacities as representing traffic flow limits: the
directed arcs correspond to unidirectional streets
and the problem is to place one-way signs on each
undirected street (I, J) so as to maximize the traffic
flow from s to t

4 The procedure is to replace each undirected arc by
two directed arcs (1, J) and (], 1) to determine the

maximal s—t flow



EXAMPLE OF A NETWORK WITH
3 UNDIRECTED ARCS

40

30




EXAMPLE OF A NETWORK WITH
3 UNDIRECTED ARCS

d We apply the max flow scheme to the directed
network and give the following interpretations to
the flows on the max flow bidirectional arcs that
are the initially undirected arcs (1,]):if

f;; >0, f;>0and f;; >f1;; ,

set up the flow from 1 to J with value f;; — f;;
and remove the arc (J,1)
 The determination of the max flow f for this

example is easily determined



EXAMPLE OF A NETWORK WITH
3 UNDIRECTED ARCS




EXAMPLE OF A NETWORK WITH
3 UNDIRECTED ARCS : RESULT

flow: s -1 3 -t = 30
flow: s — 2 — 4 —t = 30
flow:. s -1 —4 - 3 -t = 10

and so the maximum flow is 30+ 30+ 10 =70
one way signs must be put from 1—4and 4.3,
an alternative path of a flow of 10 is the path:

s .1 .2_.4_.3_t, whichrequires one-way

signs from 1—-2 and 4 -3



NETWORKS WITH MULTIPLE
SOURCES AND MULTIPLE SINKS

1 We next consider a network with several supply
and several demand points

d We introduce a super source § linking to all the
sources and a super sink t linking all the sinks

d We can consequently apply the max flow algorithm

to the modified network



NETWORKS WITH MULTIPLE
SOURCES AND MULTIPLE SINKS

L -

© ; (0
B\




MULTIPLE — SOURCE / MULTIPLE —
SINK NETWORK EXAMPLE

5 15 sink with
demand 15

10 . sink with
10 5 demand 20
5 10
L ° °
S > 10 10
sources each

with a 4 0 7
supply 20




MULTIPLE — SOURCE / MULTIPLE —
SINK NETWORK EXAMPLE

15 e super sink
2 n
10 node t
super source
node § 10
R \20 / 5 20
B (oD
20

5

& S 10 /10
4 2 7

(0p)




MULTIPLE — SOURCE / MULTIPLE —
SINK NETWORK EXAMPLE

d The transshipment problem is feasible if and only

if the maximal §—t flow f satisfies

f = Y demands

sinks

1 We need to show that
Q the transshipment problem is infeasible since
the network cannot accommodate the total
demand of 35

Q the smallest shortage for this problem is 5



MULTIPLE — SOURCE / MULTIPLE —
SINK NETWORK EXAMPLE




MULTIPLE — SOURCE / MULTIPLE —
SINK NETWORK EXAMPLE

d The minimum cut is shown and has capacity
15+5+5+5=30;
the maximum flow is, therefore, 30
A Since the maximum flow fails to meet the total
demand of 35 units by the super sink, the problem

IS infeasible; the minimum shortage is 5



APPLICATION TO MANPOWER
SCHEDULING

1 Consider the case of a company that must
complete its 4 engineering projects within 6
months

Mmanpower

earliest start latest finish requirements

month month

project

( man month)




APPLICATION TO MANPOWER
SCHEDULING

d There are the following additional constraints:
Q the company has only 4 engineers
Q at most 2 engineers may be assigned to any
one project in a given month
Q no engineer may be assigned to more than one
project at any time
d The question is whether there is a feasible assign-

ment and, If so, determine the optimal assignment



APPLICATION TO MANPOWER
SCHEDULING

d The solution approach is to set up the problem as
a transshipment network
Q the sources are the 6 months of engineer labor
Q the sinks are the 4 projects that must be done
Q an arc (1,]) Is introduced whenever a feasible
assignment of the engineers who work In
month I can be made to project | with
Kij = 2 1=12...,6, J=A,B,C,D
Q thereis no arc (1, C) since project C cannot
start before month 2



supplies
man months

APPLICATION TO MANPOWER
SCHEDULING

4 a each arc has capacity 2
R
4 ax <7
\‘

man / months



APPLICATION TO MANPOWER
SCHEDULING

d The transshipment problem is feasible if the total
demand
6 +8+3+4=21
can be met
1 We determine whether a feasible schedule exists

and if so, we find it



APPLICATION TO MANPOWER
SCHEDULING




APPLICATION TO MANPOWER
SCHEDULING

(D=2
(4, 4) 2,2) (2,2)
2)




SHORTEST ROUTE PROBLEM

4 The problem is to determine the shortest path from
s=1to t=nin anetwork with the set of nodes
& ={1,2,...,n}
and the set of arcs {(i, ])}, where for each arc (i, })
d;; = distance or transit time

d The determination of the shortest path from 1to n

requires the specification of the path

{(L0), (in0y), wes(igon) }



SHORTEST ROUTE PROBLEM

d We can write an LP formulation of this problem in
the form of a transshipment problem:
ship 1 unit from node 1to node n by
minimizing the shipping costs using the costs

- shipping costs for 1 unit from 1 to |

) whenever 1 and | are not directly connected

\.

 But, in practice, we use the Dijkstra scheme solution



THE DIJKSTRA ALGORITHM

1 The solution is very efficiently performed using

the Dijkstra algorithm
d The assumptions are
O d;; Is given for each pair of connected nodes

Qd;; >0

d The scheme is, basically, a label assignment
procedure, which assigns nodes with either a

permanent or a temporary label



THE DIJKSTRA ALGORITHM

d The temporary label of a node 1 Is an upper bound
on the shortest distance from node 1 to node |
 The permanent label is the actual shortest distance

from node 1 to node |
d A temporary label becomes permanent when we
find the tightest upper bound, i.e., the shortest

distance



THE DIJKSTRA ALGORITHM

Step 0: assign the permanent label 0 to node 1
Step 1: assign temporary labels to all the other nodes
O dy If node j is directly connected to
node 1
Q oo if node J Is not directly connected to
node 1
and select the minimum of the temporary
labels and declare it permanent ; in case of
ties, the choice is arbitrary (but requires a
rule)



THE DIJKSTRA ALGORITHM

Step 2 : let ¢ be the node most recently assigned a
permanent label and consider each node |
with a temporary label; recompute each label

min | temporary lal?el , permanent label v d, |
of node j of node ¢ /

Step 3: select the smallest of the temporary labels
and declare it permanent ; in case of ties,
the choice is arbitrary (but we need a rule)

Step 4: iIf the selected node is n, stop; else, go to
Step 2



THE DIJKSTRA ALGORITHM

d The shortest path is obtained by retracing the

sequence of nodes with permanent labels starting

at node n and returning back to node 1

 The path is then given in the forward direction

starting from node 1 and ending at node n



EXAMPLE : SHORTEST PATH

1 Consider the undirected network




EXAMPLE : SHORTEST PATH

d The problem is to

Q find the shortest path from 1 to 6

Q compute the length of the shortest path

d We apply the Dijkstra algorithm and assign

iteratively a permanent label to each node



EXAMPLE : SHORTEST PATH

0
Steps 0and1 : £(0) = [0,3,7,4,00,00]

initial |a@/v 1

Step 2 : £0) 10,3,5,4,00,12 |
@in iteratioE' 2

Steps 2,3and4 : £(22) = (0,3,5,4,7,12]

@ in itera@/v 3




EXAMPLE : SHORTEST PATH

Steps 2,3and4 : £(3) = [0,3,5,4,7,11]

@ in |tera@' 4

Steps 2,3and 4 : £(4) = [0,3,54,7,10]

@ in itera@v 0

£(4) = [0,3,5,4,7,10]

0
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EXAMPLE : SHORTEST PATH

(s )5

d The shortest distance is 10 obtained with the path
{(1,4),(45),(56)}



PATH RETRACING

d We retrace the path from n back to 1 using the
scheme:
pick node J preceding node n as the node

with the property

permanent label of ] shortest
_ + jn =
node |j distance

4 In the retracing scheme, certain nodes may be

skipped



SHORTEST PATH BETWEEN ANY
TWO NODES

d The Dijkstra algorithm may be applied to compute
the shortest distance between any pair of nodes 1, |
by taking 1 as the source node and | as the sink

node

d We give as an example the following five — node

network



EXAMPLE : FIVE - NODE NETWORK




EXAMPLE : FIVE - NODE NETWORK

£(0) = [0,3,4,8,10]
0

£@) = [0,3,4,7,10]

1

£2) = [0,3,4,6,8]
2




EXAMPLE : FIVE - NODE NETWORK

£3) = [0,3,4,6,8].
3

We retrace the path to get

8§= 4 +d,,

node 2 4

determines the
shortest distance from 0

to every other node

and so the path is

0 —>2—4
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EXAMPLE : FIVE - NODE NETWORK

2 | Y4 gl 3 10

A
33 m‘aﬁ

4 4443




APPPLICATION : EQUIPMENT
REPLACEMENT PROBLEM

d We consider the problem of old equipment
replacement or its continued maintenance

d As equipment ages, the level of maintenance
required increases and typically, this results In
Increased operating costs

d O&M costs may be reduced by replacing aging
equipment; however, replacement requires addi-

tional capital investment and so higher fixed costs



APPPLICATION : EQUIPMENT
REPLACEMENT PROBLEM

d The problem is how often to replace equipment

so as to minimize the total costs given by

total capital + O&M

COSts COStS COStS

T T

fixed variable



EXAMPLE: EQUIPMENT

REPLACEMENT

d Equipment replacement is planned during the

next 5years

] The cost elements are

Py =
g. =

O
[

purchase costs in year |

salvage value of original

equipment after j years of use

O&M costs In year | of operation

of equipment with the property that
. € < Cjuq <Cjip < ...

d We formulate this problem as a shortest route
problem on a directed network



EQUIPMENT REPLACEMENT
PROBLEM

end of

planning

start of d.,g

planning period



APPPLICATION : EQUIPMENT
REPLACEMENT PROBLEM

The “distances” d;; are defined to be finite if

| <] ,l.e., year | precedes the year |, with

J1
dij= pi . Sj—i + ZCT j>l
T T 7=1
purchase salvage value O&M costs
price In after j—1 for j—1 years

year | years of use of operation



APPPLICATION : EQUIPMENT
REPLACEMENT PROBLEM

d For example, if the purchase is made in year 1

5
d16 = p, — 8 * ZCT
7=1

1 The solution 1s the shortest ¢

year 1 to year 6; if for examp

Istance path from

e the path is

{(1,2),23),(3,4),(45),(56)}

then the solution is interpreted as the replacement

of the equipment each year with

total costs

5
z p, — 35, + 3¢,
7=1



COMPACT BOOK STORAGE INA
LIBRARY

 This problem concerns the storage of books in a
limited size library

] Books are stored according to their size, in terms
of height and thickness, with books placed in
groups of same or higher height; the set of book
heights { H;} Is arranged in ascending order with

H, < H, < ... < H,



COMPACT BOOK STORAGE INA
LIBRARY

d Any book of height H; may be shelved on a shelf
of height at least H; ,1.e.,, H,,H,,;, Hi,,, ...
d The length L, of shelving required for height H; Is

computed given the thickness of each book; the

total shelf area required is Z H; L,
Q i1f only 1 height class [corresponding to the

tallest book] exists, total shelf area required is
the total length of the thickness of all books

times the height of the tallest book



COMPACT BOOK STORAGE INA
LIBRARY

Q iIf 2 or more height classes are considered,
the total area required is less than the total
area required for a single class

 The costs of construction of shelf areas for each
height class H; have the components

S

fixed costs [ Independent of shelf area ]

c. variable costs / unit area



COMPACT BOOK STORAGE INA
LIBRARY

d For example, if we consider the problem with 2
height classes H_,and H, with H_, < H|,
Q all books of height < H_, are shelved in shelf
with the height H
Q all the other books are shelved on the shelf
with height H,

 The corresponding total costs are

m n
s, tec, H, ZLJ. + |s,+c H, 2 L,
j=1

j=m+1




COMPACT BOOK STORAGE INA
LIBRARY

A The problem is to find the set of shelf heights and
lengths to minimize the total shelving costs

4 The solution approach is to use a network flow
model for a network with
Q the set of (n+1) nodes

v ={0,1,2,...,n}
corresponding to the n book heights with
l<>H,<H,<..<H,©n

and the starting node with height 0



COMPACT BOOK STORAGE INA
LIBRARY

Q directed arcs (1,]) onlyif J > 1 resulting in a

total of mn(n+1) arcs
2

O “distance” d; on each arc given by

J
s+ cH > L, if j>i

d = k=i+1

00 otherwise



COMPACT BOOK STORAGE INA
LIBRARY

A For this network, we solve the shortest route
problem for the specified “distances” d;;
d Suppose that for a problem with n = 17, we
determine the optimal trajectory to be
{(0,7),(7,9),(9,15),(15,17) }

the interpretation of this solution is :



COMPACT BOOK STORAGE IN A
LIBRARY

Q store all the books of height < H-, on the shelf

of height H,

Q store all the books of height < Hy but >H- on
the shelf of height H,

Q store all the books of height < H;; but > Hgon
the shelf of height H:

Q store all the books of height < H,; but >H
on the shelf of height H;



